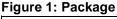


STP120NF04

N-CHANNEL 40V - 0.0047Ω - 120A TO-220 STripFET™II MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D (1)	Pw	
STP120NF04	40 V	< 0.0050Ω	120 A	300 W	


- TYPICAL $R_{DS}(on) = 0.0047 \Omega$
- STANDARD THRESHOLD DRIVE
- 100% AVALANCHE TESTED

DESCRIPTION

This MOSFET is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

■ HIGH CURRENT, HIGH SWITCHING SPEED

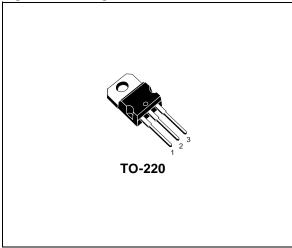
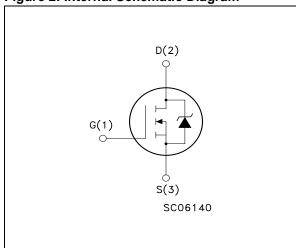



Figure 2: Internal Schematic Diagram

Table 2: Order Codes

Part Number	Marking	Package	Packaging
STP120NF04	P120NF04	TO-220	TUBE

February 2005 1/11

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	40	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	40	V
V _{GS}	Gate- source Voltage	± 20	V
I _D (#)	Drain Current (continuos) at T _C = 25°C	120	А
I _D	Drain Current (continuos) at T _C = 100°C	120	А
I _{DM} (•)	Drain Current (pulsed)	480	А
P _{TOT}	Total Dissipation at T _C = 25°C	300	W
	Derating Factor	2	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	6	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	1.2	٦
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 175	°C

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	0.5	°C/W
Rthj-pcb	Thermal Resistance Junction-pcb Max	See Curve on page 6	°C/W
Rthj-amb	Thermal Resistance Junction-ambient (Free air) Max	62.5	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300	°C

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 5: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0$	40			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.8		4.5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 50 A		0.0047	0.0050	Ω

Table 6: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > =15 \text{ V}, I_{D} =50 \text{ A}$		150		S
C _{iss}	Input Capacitance	V _{DS} = 25 V, f = 1 MHz,		5100		pF
Coss	Output Capacitance	$V_{GS} = 0$		1300		pF
C _{rss}	Reverse Transfer Capacitance			160		pF

2/11

⁽e) Pulse width limited by safe operating area (1) $I_{SD} \le 120A$, $di/dt \le 300A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$. (2) Starting $T_j = 25$ °C, $I_d = 60A$, $V_{DD} = 30$ V (#) Current Limited by Package

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$V_{DD} = 20 \text{ V, } I_{D} = 60 \text{ A}$ $R_{G} = 4.7\Omega \text{ V}_{GS} = 10 \text{ V}$ (see, Figure 20)		35 220		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 32V, I_{D} = 120 A,$ $V_{GS} = 10V$ (see, Figure 22)		110 35 35	150	nC nC nC

Table 8: Switching

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off Delay Time Fall Time	V_{DD} = 20 V, I_D = 60 A R_G = 4.7 Ω V _{GS} = 10 V (see Figure 20)		80 50		ns ns

Table 9: Source Drain Diode

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				120 480	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 120 A, V _{GS} = 0			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 120 A, di/dt = 100A/ μ s V_{DD} = 20V, T_j = 150°C (see test circuit, Figure 21)		75 185 5		ns nC A

⁽¹⁾ Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.

⁽²⁾ Pulse width limited by safe operating area.

Figure 3: Safe Operating Area

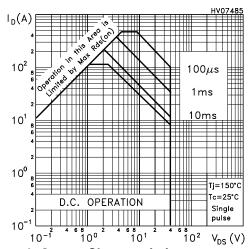


Figure 4: Output Characteristics

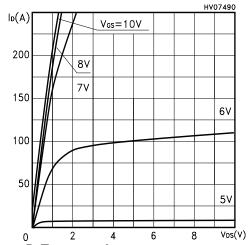


Figure 5: Transconductance

Figure 6: Thermal Impedance



Figure 7: Transfer Characteristics

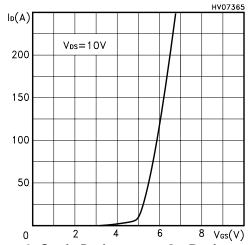
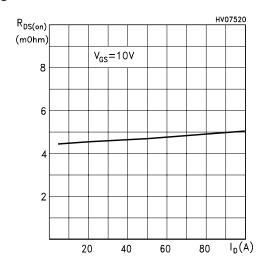



Figure 8: Static Drain-source On Resistance

47/

Figure 9: Gate Charge vs Gate-source Voltage

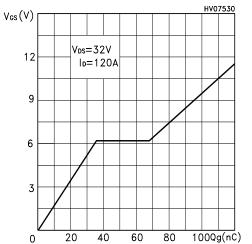


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

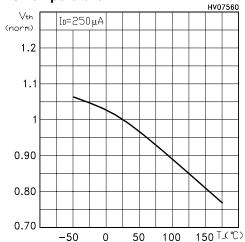


Figure 11: Normalized On Resistance vs Temperature

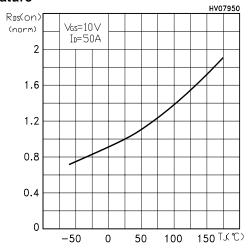


Figure 12: Capacitance Variation

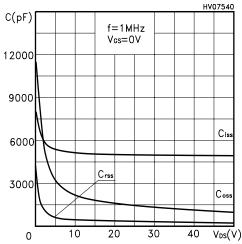


Figure 13: Normalized BVDSS vs Temperature

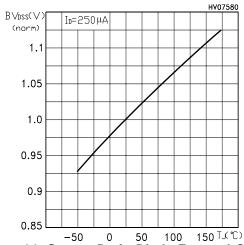


Figure 14: Source-Drain Diode Forward Characteristics

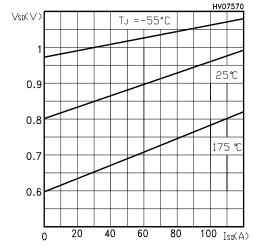


Figure 15: Power Derating vs Tc

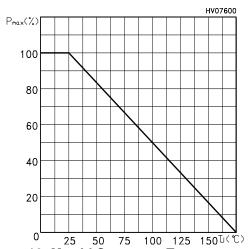


Figure 16: Max Id Current vs Tc

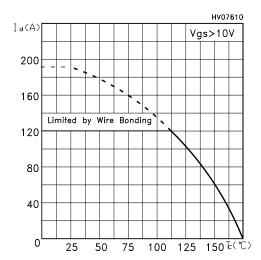


Figure 17: Thermal Resistance Rthj-a vs PCB Copper Area

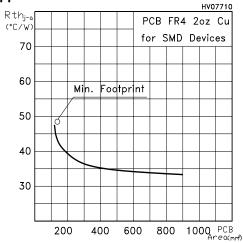
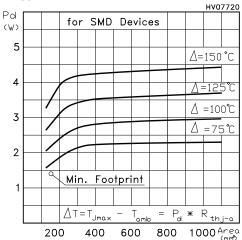
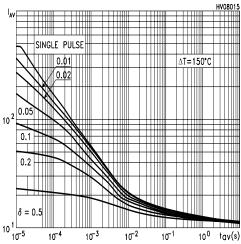




Figure 18: Max Power Dissipation vsPCB Copper Area

47/

Figure 19: Allowable lav vs Time in Avalanche

The previous curve gives the safe operating area for unclamped inductive loads, single pulse or repetitive, under the following conditions:

$$P_{D(AVE)} = 0.5 * (1.3 * BV_{DSS} * I_{AV})$$

$$E_{AS(AR)} = P_{D(AVE)} * t_{AV}$$

Where:

 I_{AV} is the Allowable Current in Avalanche $P_{D(AVE)}$ is the Average Power Dissipation in Avalanche (Single Pulse) t_{AV} is the Time in Avalanche

To derate above 25 °C, at fixed I_{AV}, the following equation must be applied:

$$I_{AV} = 2 * (T_{jmax} - T_{CASE}) / (1.3 * BV_{DSS} * Z_{th})$$

Where:

 Z_{th} = K * R_{th} is the value coming from Normalized Thermal Response at fixed pulse width equal to T_{AV} .

Figure 20: Switching Times Test Circuit For Resistive Load

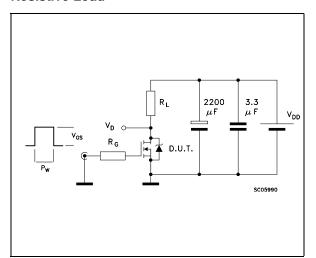
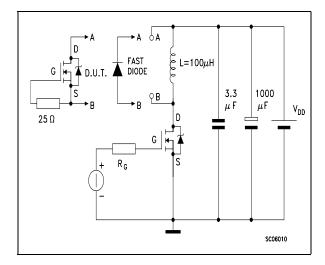
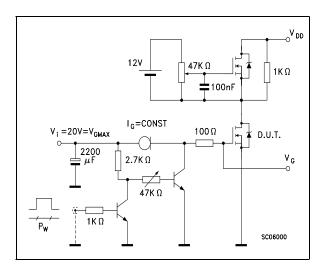
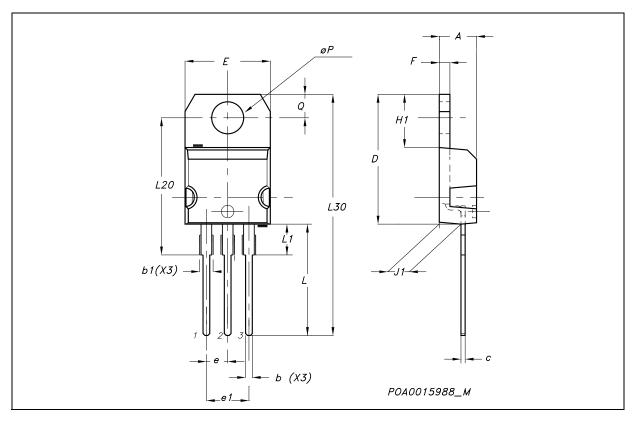


Figure 21: Test Circuit For Diode Recovery Times


Figure 22: Gate Charge Test Circuit

57.

TO-220 MECHANICAL DATA

DIM	mm.				inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	4.40		4.60	0.173		0.181	
b	0.61		0.88	0.024		0.034	
b1	1.15		1.70	0.045		0.066	
С	0.49		0.70	0.019		0.027	
D	15.25		15.75	0.60		0.620	
Е	10		10.40	0.393		0.409	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
F	1.23		1.32	0.048		0.052	
H1	6.20		6.60	0.244		0.256	
J1	2.40		2.72	0.094		0.107	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L20		16.40			0.645		
L30		28.90			1.137		
øΡ	3.75		3.85	0.147		0.151	
Q	2.65		2.95	0.104		0.116	

Table 10: Revision History

Date	Revision	Description of Changes
15-Feb-2005	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

